Group Cohomology, Modular Theory And Space-Time Symmetries

نویسنده

  • R. Brunetti
چکیده

The Bisognano-Wichmann property on the geometric behavior of the modular group of the von Neumann algebras of local observables associated to wedge regions in Quantum Field Theory is shown to provide an intrinsic suucient criterion for the existence of a covariant action of the (universal covering of) the Poincar e group. In particular this gives, together with our previous results, an intrinsic characterization of positive-energy conformal pre-cosheaves of von Neumann algebras. To this end we adapt to our use Moore theory of central extensions of locally compact groups by polish groups, selecting and making an analysis of a wider class of extensions with natural measurable properties and showing henceforth that the universal covering of the Poincar e group has only trivial central extensions (vanishing of the rst and second order cohomology) within our class.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

v 1 1 8 Ja n 19 94 GROUP COHOMOLOGY , MODULAR THEORY AND SPACE - TIME SYMMETRIES

The Bisognano-Wichmann property on the geometric behavior of the modular group of the von Neumann algebras of local observables associated to wedge regions in Quantum Field Theory is shown to provide an intrinsic sufficient criterion for the existence of a covariant action of the (universal covering of) the Poincaré group. In particular this gives, together with our previous results, an intrins...

متن کامل

New Superstring Isometries and Hidden Dimensions

We study the hierarchy of hidden space-time symmetries of noncritical strings in RNS formalism, realized nonlinearly. Under these symmetry transformations the variation of the matter part of the RNS action is cancelled by that of the ghost part. These symmetries, referred to as the α-symmetries, are induced by special space-time generators, violating the equivalence of ghost pictures. We classi...

متن کامل

ar X iv : h ep - t h / 93 10 05 7 v 3 2 7 O ct 1 99 3 Modular Theory and Symmetry in QFT B . Schroer

The application of the Tomita-Takesaki modular theory to the Haag-Kastler net approach in QFT yields external (space-time) symmetries as well as internal ones (internal " gauge para-groups ") and their dual counterparts (the " super selection para-group "). An attempt is made to develop a (speculative) picture on " quantum symmetry " which links space-time symmetries in an inexorable way with i...

متن کامل

Finite Group Actions on Siegel Modular Spaces

The theory of nonabelian cohomology is used to show that the set of fixed points of a finite group acting on a Siegel modular space is a union of Shimura varieties

متن کامل

Modular Theoryand Space - Time Symmetriesr

The Bisognano-Wichmann property on the geometric behavior of the modular group of the von Neumann algebras of local observables associated to wedge regions in Quantum Field Theory is shown to provide an intrinsic suucient criterion for the existence of a covariant action of the (universal covering of) the Poincar e group. In particular this gives, together with our previous results, an intrinsi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007